Abstract

Flow processing offers many opportunities to optimize reactions in a rapid and automated manner, yet often requires relatively large quantities of input materials. To combat this, the use of a flexible slug flow reactor, equipped with two analytical instruments, for low-volume optimization experiments are reported. A Buchwald-Hartwig amination toward the drug olanzapine, with 6 independent optimizable variables, is optimized using three different automated approaches: self-optimization, design of experiments, and kinetic modeling. These approaches are complementary and provide differing information on the reaction: pareto optimal operating points, response surface models, and mechanistic models, respectively. The results are achieved using <10% of the material that would be required for standard flow operation. Finally, a chemometric model is built utilizing automated data handling and three subsequent validation experiments demonstrate good agreement between the slug flow reactor and a standard (larger scale) flow reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.