Abstract

In the construction of large-scale water conservancy and hydropower transportation projects, the rock mass structural information is often used to evaluate and analyze various engineering geological problems such as high and steep slope stability, dam abutment stability, and natural rock landslide geological disasters. The complex shape and extremely irregular distribution of the structural planes make it challenging to identify and extract automatically. This study proposes a method for extracting structural planes from UAV images based on Geo-AINet ensemble learning. The UAV images of the slope are first used to generate a dense point cloud through a pipeline of SfM and PMVS; then, the multiple geological semantics, including color and texture from the image and local geological occurrence and surface roughness from the dense point cloud, are integrated with Geo-AINet for ensemble learning to obtain a set of semantic blocks; finally, the accurate extraction of structural planes is achieved through a multi-semantic hierarchical clustering strategy. Experimental results show that the structural planes extracted by the proposed method perform better integrity and edge adherence than that extracted by the AINet algorithm. In comparison with the results from the laser point cloud, the geological occurrence differences are less than three degrees, which proves the reliability of the results. This study widens the scope for surveying and mapping using remote sensing in engineering geological applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.