Abstract

Abstract. Architectural building models (LoD3) consist of detailed wall and roof structures including openings, such as doors and windows. Openings are usually identified through corner and edge detection, based on terrestrial LiDAR point clouds. However, singular boundary points are mostly detected by analysing their neighbourhoods within a small search area, which is highly sensitive to noise. In this paper, we present a global-wide sliding window method on a projected façade to reduce the influence of noise. We formulate the gradient of point density for the sliding window to inspect the change of façade elements. With derived symmetry information from statistical analysis, border lines of the changes are extracted and intersected generating corner points of openings. We demonstrate the performance of the proposed approach on the static and mobile terrestrial LiDAR data with inhomogeneous point density. The algorithm detects the corners of repetitive and neatly arranged openings and also recovers angular points within slightly missing data areas. In the future we will extend the algorithm to detect disordered openings and assist to façade modelling, semantic labelling and procedural modelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.