Abstract

A dynamical sliding mode control approach is proposed for robust adaptive learning in analog Adaptive Linear Elements (Adalines), constituting basic building blocks for perceptron-based feedforward neural networks. The zero level set of the learning error variable is regarded as a sliding surface in the space of learning parameters. A sliding mode trajectory can then be induced, in finite time, on such a desired sliding manifold. Neuron weights adaptation trajectories are shown to be of continuous nature, thus avoiding bang-bang weight adaptation procedures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call