Abstract
This paper proposes a sliding-mode position estimation method for high-speed surface-mounted permanent magnet synchronous machines with LCL filter. The implementation of the LCL filter aims at smoothing the motor current and reducing the iron loss caused by the harmonic currents. Firstly, the discrete-time model of the LCL-filtered motor drive system is developed. Based on the developed model, the sliding-mode observer is proposed with more robustness against the parameter variation to estimate the back-EMF, which contains the information of the rotor speed and position. Because of the elimination of the capacitor voltage sensors, the augmented sliding surface is designed to achieve arbitrary pole placement with only output feedback. Besides, considering the analog-to-digital scaling error and PWM harmonics, a reaching law with enhanced chattering suppression ability is proposed. Compared with the conventional methods, the chattering problem is well alleviated and thus the speed estimation ripple is much reduced. Finally, the effectiveness of the proposed method, even with the mismatched parameters adopted is validated at 100 kr/min with the sampling frequency 20 kHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.