Abstract

A three-dimensional, nonlinear contact finite element (FE) model of total hip replacement, linked to a sliding-distance-coupled wear algorithm, was used to study polyethylene wear rates for three different femoral head sizes. Hip resultant loads from a validated gait analysis model were used in the FE model to determine contact stress distributions on the polyethylene bearing surface, for 16 discrete instants of stance phase. Sliding distances of points on the femoral head surface were obtained from the corresponding flexion/extension kinematics. Wear rates were determined by a custom-written computer program that used a relationship that coupled contact stress, sliding distance, and a pin-on-disk determined wear coefficient. The wear rates computed by this formulation were well within clinically observed ranges for each component size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.