Abstract

BackgroundSleep spindles are a marker of stage 2 NREM sleep that are linked to learning & memory and are altered by many neurological diseases. Although visual inspection of the EEG is considered the gold standard for spindle detection, it is time-consuming, costly and can introduce inter/ra-scorer bias. New methodOur goal was to develop a simple and efficient sleep-spindle detector (algorithm #7, or ‘A7’) that emulates human scoring. ‘A7’ runs on a single EEG channel and relies on four parameters: the absolute sigma power, relative sigma power, and correlation/covariance of the sigma band-passed signal to the original EEG signal. To test the performance of the detector, we compared it against a gold standard spindle dataset derived from the consensus of a group of human experts. ResultsThe by-event performance of the ‘A7’ spindle detector was 74% precision, 68% recall (sensitivity), and an F1-score of 0.70. This performance was equivalent to an individual human expert (average F1-score = 0.67). Comparison with existing method(s)The F1-score of ‘A7’ was 0.17 points higher than other spindle detectors tested. Existing detectors have a tendency to find large numbers of false positives compared to human scorers. On a by-subject basis, the spindle density estimates produced by A7 were well correlated with human experts (r2 = 0.82) compared to the existing detectors (average r2 = 0.27). ConclusionsThe ‘A7’ detector is a sensitive and precise tool designed to emulate human spindle scoring by minimizing the number of ‘hidden spindles’ detected. We provide an open-source implementation of this detector for further use and testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.