Abstract
This paper introduces an improved slack-based game cross-efficiency measurement model that enhances the existing cross-efficiency framework and integrates it with the Data Envelopment Analysis (DEA) game cross-efficiency. The model ensures the fairness of its results through the implementation of a more stringent selection of frontier face weights. It accounts for the competitive relationships among Decision Making Units (DMUs), achieving a Nash equilibrium solution through continuous iterations. Furthermore, the model accounts for undesirable outputs and various strategic orientations, enhancing its applicability. The model’s effectiveness is validated through comparative analyses of diverse case studies. Additionally, the model’s practical utility is demonstrated through the analysis of industrial data from various Chinese provinces between 2010 and 2019. Analysis results show that the proposed model measures production efficiency with greater precision and comparability than alternative models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.