Abstract
West China is one of the country’s largest precipitation centres in autumn. This region’s agriculture and people are highly vulnerable to the variability in the autumn rain. This study documents that the water vapour for West China autumn precipitation (WCAP) is from the Bay of Bengal, the South China Sea and the Western Pacific. A strong convergence of the three water vapour transports (WVTs) and their encounter with the cold air from the northern trough over Lake Barkersh-Lake Baikal result in the intense WCAP. Three predictors in the preceding spring or summer are identified for the interannual variability of WCAP: (1) sea surface temperature in the Indo-Pacific warm pool in summer, (2) soil moisture from the Hexi Corridor to the Hetao Plain in summer and (3) snow cover extent over East Europe and West Siberian in spring. The cold SSTAs contribute to an abnormal regional meridional circulation and intensified WVTs. The wet soil results in greater air humidity and anomalous southerly emerging over East Asia. Reduced snow cover stimulates a Rossby wave train that weakens the cold air, favouring autumn rainfall in West China. The three predictors, which demonstrate the influences of air-sea interaction, land surface processes and the cryosphere on the WCAP, have clear physical significance and are independent with each other. We then develop a new statistical prediction model with these predictors and the multilinear regression analysis method. The predicted and observed WCAP shows high correlation coefficients of 0.63 and 0.51 using cross-validation tests and independent hindcasts, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.