Abstract
Missing values are common in longitudinal data studies. The missing data mechanism is termed non-ignorable (NI) if the probability of missingness depends on the non-response (missing) observations. This paper presents a model for the ordinal categorical longitudinal data with NI non-monotone missing values. We assumed two separate models for the response and missing procedure. The response is modeled as ordinal logistic, whereas the logistic binary model is considered for the missing process. We employ these models in the context of so-called shared-parameter models, where the outcome and missing data models are connected by a common set of random effects. It is commonly assumed that the random effect follows the normal distribution in longitudinal data with or without missing data. This can be extremely restrictive in practice, and it may result in misleading statistical inferences. In this paper, we instead adopt a more flexible alternative distribution which is called the skew-normal distribution. The methodology is illustrated through an application to Schizophrenia Collaborative Study data [19] and a simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.