Abstract

When high-energy explosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 2,4,6-trinitrotoluene (TNT) are discharged into the surrounding soil and water during production, testing, open dumping, military, or civil activities, they leave a toxic footprint. The US Environmental Protection Agency has labeled RDX as a potential human carcinogen that must be degraded from contaminated sites quickly. Bioremediation of RDX is an exciting prospect that has received much attention in recent years. However, a lack of understanding of RDX biodegradation and the limitations of current approaches have hampered the widespread use of biodegradation-based strategies for RDX remediation at contamination sites. Consequently, new bioremediation technologies are required to enhance performance. In this review, we explore the requirements for in-silico analysis for producing biological models of microbial remediation of RDX in soil. On the other hand, potential gene editing methods for getting the host with target gene sequences responsible for the breakdown of RDX are also reported. Microbial formulations and biosensors for detection and bioremediation are also briefly described. The biodegradation of RDX offers an alternative remediation method that is both cost-effective and ecologically acceptable. It has the potential to be used in conjunction with other cutting-edge technologies to further increase the efficiency of RDX degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call