Abstract
Abstract Soccer is undeniably the most popular sport world-wide and everyone from general managers and coaching staff to fans and media are interested in evaluating players’ performance. Metrics applied successfully in other sports, such as the (adjusted) +/− that allows for division of credit among a basketball team’s players, exhibit several challenges when applied to soccer due to severe co-linearities. Recently, a number of player evaluation metrics have been developed utilizing optical tracking data, but they are based on proprietary data. In this work, our objective is to develop an open framework that can estimate the expected contribution of a soccer player to his team’s winning chances using publicly available data. In particular, using data from (i) approximately 20,000 games from 11 European leagues over eight seasons, and, (ii) player ratings from the FIFA video game, we estimate through a Skellam regression model the importance of every line (attackers, midfielders, defenders and goalkeeping) in winning a soccer game. We consequently translate the model to expected league points added above a replacement player (eLPAR). This model can further be used as a guide for allocating a team’s salary budget to players based on their expected contributions on the pitch. We showcase similar applications using annual salary data from the English Premier League and identify evidence that in our dataset the market appears to under-value defensive line players relative to goalkeepers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.