Abstract

The pole-like object detection is of significance for robot navigation, autonomous driving, road infrastructure inventory, and detailed 3-D map generation. In this letter, we develop a skeleton-based hierarchical method for automatic detection of pole-like objects from mobile LiDAR point clouds. First, coarse extraction of building facades is adopted for the occlusion analysis. Second, slice-based Euclidean clustering algorithm is implemented to derive a set of pole-like object candidates. Third, skeleton-based principal component analysis shape recognition is presented to robustly locate all possible positions of pole-like objects. Finally, a Voronoi-constrained vertical region growing algorithm is proposed to adaptively producing the individual pole-like objects. Experiments were conducted on the public Paris–Lille-3-D data set. Experimental results demonstrate that the proposed method is robust and efficient for extracting the pole-like objects, with average quality of 90.43%. Furthermore, the proposed method outperforms other existing methods, especially for detecting pole-like objects with a large radius.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call