Abstract

Quality grading in antler mushroom industrial production is a labor-intensive operation. For a long time, manual grading has been used for grading, which produces various problems such as insufficient reliability, low production efficiency, and high mushroom body damage. Automatic grading is a problem to be solved urgently for antler mushroom industrial development with increasing labor costs. To solve the problem, this paper deeply integrates the single-stage object detection of YOLOv5 and the semantic segmentation of PSPNet, and proposes a Y-PNet model for real-time object detection and an image segmentation network. This article also proposes an evaluation model for antler mushroom’s size, which eliminates subjective judgment and achieves quality grading. Moreover, to meet the needs of efficient and accurate hierarchical detection in the factory, this study uses the lightweight network model to construct a lightweight YOLOv5 single-stage object detection model. The MobileNetV3 network model embedded with a CBAM module is used as the backbone extractor in PSPNet to reduce the model’s size and improve the model’s efficiency and accuracy for segmentation. Experiments show that the proposed system can perform real-time grading successfully, which can provide instructive and practical references in industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.