Abstract

For small-energy initial regular planar curves with generalised Neumann boundary conditions, we consider the steepest-descent gradient flow for the $L^2$-norm of the derivative of curvature with respect to arc length. We show that such curves between parallel lines converge exponentially in the $C^\infty$ topology in infinite time to straight lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.