Abstract

This article investigates behavior of flying capacitor multilevel (FCML) converters in single-phase buck-type power factor correction (PFC) applications. Recent developments in FCML converters using gallium nitride (GaN) transistors are leveraged to improve power density of a single-phase 240 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\text{V}_{\text{RMS}}$</tex-math></inline-formula> ac to direct 48 V dc conversion stage in data center power delivery applications. Here, we experimentally demonstrate this concept in a digitally controlled six-level FCML converter hardware prototype. The experimental prototype can deliver 4.5 A average output current at 48 V, resulting in 216 W output power. A key contribution of this article is experimental demonstration of an FCML buck converter in a single-phase PFC application where the flying capacitor voltages follow fractions of the rectified input voltage by swinging at twice-line frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call