Abstract

Two-dimensional (2D) MoS2/TiO2 heterostructure composites with exposed (001) facets (MT-001) were fabricated through a situ hydrothermal method. The microstructure and composition of the composite material were characterized by XRD, TEM, and XPS. TEM results showed that the composite consisted of well-defined sheet-shaped structures with a rectangular outline and a length of approximately 80–140 nm. XPS results demonstrated that the MoS2 coated on the surface of TiO2 nanosheets with (001) facets (T-001). Further investigation of UV–Vis diffuse reflectance spectra revealed that light absorption had the strongest visible light range after T-001 compounded with MoS2. The photocatalytic activity of the composites were estimated by the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Compared with T-001, The MT-001 exhibited better photocatalytic activity in MB degradation because of the formation of nano-heterojunction, which originated from intimate interfacial contacts as well as the suitably matching conduction and valance levels between MoS2 and T-001. When the MoS2 loading contents of MT-001 reached 5 wt% (5 wt% MT-001), the corresponding MB degradation rate was 83.26% under visible-light irradiation for 30 min; this value is approximately 1.44 times that of T-001. The possible visible-light photocatalytic mechanism was also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.