Abstract

The incretin hormone glucagon-like peptide-1 (GLP-1) exerts important functions in controlling glucose and energy homeostasis. Endogenous GLP-1 has a very short half-life due to DPP-IV-mediated degradation and renal clearance, which limits the therapeutic use of native GLP-1. We have shown previously that immunoglobulin fragment-fused GLP-1 (GLP-1/Fc) is a structurally stable GLP-1 analog. Here, we report a non-viral GLP-1/Fc gene therapy strategy utilizing a REP78-in-trans and REB-in-cis element system to achieve a site-specific genomic integration. For this purpose, the GLP-1/Fc expression cassette, which is fused with the RBE element, was co-injected with the Rep78 plasmid into the muscles of transgenic mice carrying the AAVS1 locus of human chromosome 19. The Rep protein-mediated site-specific integration was demonstrated by nested PCR, dot-blot, and Southern blotting. We found that this approach reduced weight gain and improved lipid profiles in the AAVS1-mice on high-fat diet challenge. Our observations reveal a new GLP-1 therapeutic strategy with an apparent absence of side effects, which may find applications in diabetes treatment and obesity prevention

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.