Abstract

The influence of mono-valence-metal (Li, Na, and K) doping effect on the structural, resistivity, magnetic and magnetocaloric properties of La 0.7Ca 0.3MnO 3 polycrystalline samples is studied for a fixed (5% at Ca site) dopant concentration. All the samples crystallize in orthorhombic structure and the lattice parameters increase continuously as the dopant atoms changes from Li to Na and then K. Paramagnetic–ferromagnetic phase transition at T C and insulator–metal phase transition at T p are observed for all studied samples. The transition temperature decreases as Ca atoms is replaced by Li, while the transition temperature shifts to higher values as Ca is substituted by Na or K. In addition, the maximum magnetic entropy change of the K-doped sample is much smaller than that of the free- and Na-doped samples. The results are discussed according to the change of A-site-disorder effect caused by the systematic variations of A-site average ionic radius 〈 r A〉 and A-site-cation mismatch σ 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.