Abstract

The sintering model described in Part I, which relates to free-standing plasma-sprayed thermal barrier coatings, is extended here to the case of a coating attached to a rigid substrate. Through-thickness shrinkage measurements have been carried out for coatings attached to zirconia substrates, and these experimental data are compared with model predictions. The model is then used to explore the influence of the substrate material (zirconia vs. a nickel superalloy), and of the in-plane coating stiffness. Both differential thermal expansion stresses and tensile stresses arising from the constraint imposed on in-plane shrinkage can be relaxed via two diffusional mechanisms: Coble creep and microcrack opening. This relaxation allows progression towards densification, although the process is somewhat inhibited, compared with the case of a free-standing coating. Comparison of the stored elastic strain energy with the critical strain energy release rate for interfacial cracking allows estimates to be made of whether debonding is energetically favoured. 1 A compiled version of the sintering model can be downloaded from www.msm.cam.ac.uk/mmc/publications/software.html. 1

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.