Abstract

A sintering model is presented for prediction of changes in the microstructure and dimensions of free-standing, plasma-sprayed (PS) thermal barrier coatings (TBCs). It is based on the variational principle. It incorporates the main microstructural features of PS TBCs and simulates the effects of surface diffusion, grain boundary diffusion and grain growth. The model is validated by comparison with experimental data for shrinkage, surface area reduction and porosity reduction. Predicted microstructural changes are also used as input data for a previously developed thermal conductivity model. Good agreement is observed between prediction and measurement for all these characteristics. The model allows separation of the effects of coating microstructure and material properties, and captures the coupling between densifying and non-densifying mechanisms. A sensitivity analysis is presented, which highlights the importance of the initial pore architecture. Predictions indicate that the microstructural changes which give rise to (undesirable) increases in thermal conductivity and stiffness are very sensitive to surface diffusion. 1 A compiled version of the sintering model can be downloaded from www.msm.cam.ac.uk/mmc/publications/software.html 1

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.