Abstract

This work focuses on: (1) understanding the impact of selective forwarding attacks on tree-based routing topologies in wireless sensor networks (WSNs), and (2) investigating cryptography-based strategies to limit network degradation caused by sinkhole attacks. The main motivation of our research stems from the following observations. First, WSN protocols that construct a fixed routing topology may be significantly affected by malicious attacks. Second, considering networks deployed in a difficult to access geographical region, building up resilience against such attacks rather than detection is expected to be more beneficial. We thus first provide a simulation study on the impact of malicious attacks based on a diverse set of parameters, such as the network scale and the position and number of malicious nodes. Based on this study, we propose a single but very representative metric for describing this impact. Second, we present the novel design and evaluation of two simple and resilient topology-based reconfiguration protocols that broadcast cryptographic values. The results of our simulation study together with a detailed analysis of the cryptographic overhead (communication, memory, and computational costs) show that our reconfiguration protocols are practical and effective in improving resilience against sinkhole attacks, even in the presence of collusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.