Abstract
A singularly perturbed parabolic equation of convection–diffusion type is examined. Initially the solution approximates a concentrated source. This causes an interior layer to form within the domain for all future times. Using a suitable transformation, a layer adapted mesh is constructed to track the movement of the centre of the interior layer. A parameter-uniform numerical method is then defined, by combining the backward Euler method and a simple upwinded finite difference operator with this layer-adapted mesh. Numerical results are presented to illustrate the theoretical error bounds established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.