Abstract

A new algorithm for singular value decomposition (SVD) is presented through relating SVD problem to nonlinear systems whose solutions are constrained on hyperplanes. The hyperplane constrained nonlinear systems are solved with the help of Newton’s iterative method. It is proved that our SVD algorithm has the quadratic convergence substantially and all singular pairs are computable. These facts are also confirmed by some numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.