Abstract

This paper deals with a numerical method for solving one-dimensional unsteady Burgers–Huxley equation with the viscosity coefficient ε. The parameter ε takes any values from the half open interval (0, 1]. At small values of the parameter ε, an outflow boundary layer is produced in the neighborhood of right part of the lateral surface of the domain and the problem can be considered as a non-linear singularly perturbed problem with a singular perturbation parameter ε. Using singular perturbation analysis, asymptotic bounds for the derivatives of the solution are established by decomposing the solution into smooth and singular components. We construct a numerical scheme that comprises of implicit-Euler method to discretize in temporal direction on uniform mesh and a monotone hybrid finite difference operator to discretize the spatial variable with piecewise uniform Shishkin mesh. To obtain better accuracy, we use central finite difference scheme in the boundary layer region. Shishkin meshes are refined in the boundary layer region, therefore stability constraint is satisfied by proposed scheme. Quasilinearization process is used to tackle the non-linearity and it is shown that quasilinearization process converges quadratically. The method has been shown to be first order uniformly accurate in the temporal variable, and in the spatial direction it is first order parameter uniform convergent in the outside region of boundary layer, and almost second order parameter uniform convergent in the boundary layer region. Accuracy and uniform convergence of the proposed method is demonstrated by numerical examples and comparison of numerical results made with the other existing methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call