Abstract

The objective of this study was to validate a single-spring model in predicting measured impact forces during an outstretched arm falling scenario. Using an integrated force plate, impact forces were assessed from 10 young adults (5 males; 5 females), falling from planted knees onto outstretched arms, from a random order of drop heights: 3, 5, 7, 10, 15, 20, and 25 cm. A single-spring model incorporating body mass, drop height plus the estimated linear stiffness of the upper extremity (hand, wrist and arm) was used to predict impact force on the hand. We used an analysis of variance linearity test to test the validity of using a linear stiffness coefficient in the model. We used linear regression to assess variance (R2) in experimental impact force predicted by the single-spring model. We derived optimum linear stiffness coefficients for male, female and sex-combined. Our results indicated that the association between experimental and predicted impact forces was linear (P < 0.05). Explain variance in experimental impact force was R2 = 0.82 for sex-combined, R2 = 0.88 for males and R2 = 0.84 for females. Optimum stiffness coefficients were 7436 N/m for sex-combined, 8989 N/m for males and 4527 N/m for females. In conclusion, a linear spring coefficient used in the single-spring model proved valid for predicting impact forces from fall heights up to 25 cm. Results also suggest the use of sex-specific spring coefficients when estimating impact force using the single-spring model. This model may improve impact force to bone strength ratios (factor-of-risk) and prediction of forearm and wrist fracture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.