Abstract
Quantum confined devices of 3D topological insulators are proposed to be promising and of great importance for studies of confined topological states and for applications in low-energy-dissipative spintronics and quantum information processing. The absence of energy gap on the topological insulator surface limits the experimental realization of a quantum confined system in 3D topological insulators. Here, the successful realization of single-electron transistor devices in Bi2 Te3 nanoplates using state-of-the-art nanofabrication techniques is reported. Each device consists of a confined central island, two narrow constrictions that connect the central island to the source and drain, and surrounding gates. Low-temperature transport measurements demonstrate that the two narrow constrictions function as tunneling junctions and the device shows well-defined Coulomb current oscillations and Coulomb-diamond-shaped charge-stability diagrams. This work provides a controllable and reproducible way to form quantum confined systems in 3D topological insulators, which should greatly stimulate research toward confined topological states, low-energy-dissipative devices, and quantum information processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.