Abstract
A Fc-PNA biosensor (Fc: ferrocenyl, C(10)H(9)Fe) was designed by using two electrochemically distinguishable recognition elements with different molecular information at a single electrode. Two Fc-PNA capture probes were therefore synthesized by N-terminal labeling different dodecamer PNA sequences with different ferrocene derivatives by click chemistry. Each of the two strands was thereby tethered with one specific ferrocene derivative. The two capture probes revealed quasi-reversible redox processes of the Fc(0/+) redox couple with a significant difference in their electrochemical half-wave potentials of Delta E(1/2)=160 mV. A carefully designed biosensor interface, consisting of a ternary self-assembled monolayer (SAM) of the two C-terminal cysteine-tethered Fc-PNA capture probes and 6-mercaptohexanol, was electrochemically investigated by square wave (SWV) and cyclic voltammetry (CV). The biosensor properties of this interface were analyzed by studying the interaction with DNA sequences that were complementary to either of the two capture probes by SWV. Based on distinct changes in both peak current and potential, a parallel identification of these two DNA sequences was successful with one interface design. Moreover, the primary electrochemical response could be converted by a simple mathematical analysis into a clear-cut electrochemical signal about the hybridization event. The discrimination of single-nucleotide polymorphism (SNP) was proven with a chosen single-mismatch DNA sequence. Furthermore, experiments with crude bacterial RNA confirm the principal suitability of this dual-potential sensor under real-life conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.