Abstract

Accurate and effective identification, determination of the location, and classification of damaged buildings are essential after destructive earthquakes. However, the accuracy of image change detection is limited because of the many texture features and changes in non-building information. In this context, a model for single-building damage detection based on multi-feature fusion is proposed. First, the normalized Digital Surface Model (nDSM) was extracted from the DSM through iterative filtering and point cloud thinning, followed by the extraction of building contour information. Next, single-building images were generated from different data sources through the region of interest (ROI), and the optimal texture feature parameters were extracted for fusion. Afterward, principal-component analysis (PCA) was conducted to suppress multi-feature correlation-induced information redundancy. Finally, the damage to buildings was quantitatively evaluated, and the model was compared with 13 models. The results confirmed the practicability of the model for the Yangbi MS6.4 and Honghe MS5.0 earthquakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call