Abstract
Molecular dynamics has been used to investigate the reaction of a series of ketyl anion radicals and alkyl halides, CH2O(*)(-) + CH3X (X = F, Cl, Br) and NCCHO(*)(-) + CH3Cl. In addition to a floppy outer-sphere transition state which leads directly to ET products, there is a strongly bound transition state that yields both electron transfer (ET) and C-alkylated (SUB(C)) products. This common transition state has significant C-- C bonding and gives ET and SUB(C) products via a bifurcation on a single potential energy surface. Branching ratios have been estimated from ab initio classical trajectory calculations. The SUB(C) products are favored for transition states with short C--C bonds and ET for long C--C bonds. ET reactivity can be observed even at short distances of r(C)(-)(C) = ca. 2.4 A as in the transition state for the reaction NCCHO(*)(-) + CH3Cl. Therefore, the ET/SUB(C) reactivity is entangled over a significant range of the C--C distance. The mechanistic significance of the molecular dynamics study is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.