Abstract

Nitrogen-doped reduced graphene oxide (NrGO) sheets decorated with Co(OH)2 nanoflakes were prepared by a single-step hydrothermal process. The morphological and structural characterizations of as synthesized NrGO@Co(OH)2 nanoflakes were performed by field emission scanning electron microscopy (FESEM), EDX-mapping and X-ray diffraction (XRD). NrGO@Co(OH)2 nanoflakes modified glassy carbon electrode (GCE) was used for electrochemical sensing of dopamine in neutral medium. The nanocomposite modified electrode showed enhanced electrochemical sensing ability for the detection of dopamine and the limit of detection (LoD) was found to be 0.201μM with a sensitivity value of 0.0286 ± 0.002mAmM−1. Interference studies revealed that NrGO@Co(OH)2─GCE endow excellent selectivity for DA detection even in the presence of higher concentration of common co-existing physiological interfering analytes. Additionally, proposed sensor demonstrated excellent performance in urine samples with promising reproducibility and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.