Abstract

A single-step, easy-to-use enzyme immunoassay capillary sensor, composed of functional multilayer coatings, was developed in this study. The coatings were composed of substrate-immobilized hydrophobic coating, hydrogel coating, and soluble coating containing an enzyme-labeled antibody. The response mechanism involved a spontaneous immunoreaction triggered by capillary action-mediated introduction of a sample antigen solution and subsequent separation of unreacted enzyme-labeled antibodies and antigen-enzyme-labeled antibody complexes by the molecular sieving effect of the hydrogel. An enzyme reaction at the substrate-immobilized hydrophobic coating/hydrogel coating interface resulted in a protein-selective fluorescence response. An antigen concentration-dependent response was obtained for diagnostic marker protein samples (hemoglobin A1c (HbA1c), 7.14-16.7 mg mL(-1); alpha-fetoprotein (AFP), 1.4-140 ng mL(-1); C-reactive protein (CRP), 0.5-10 μg mL(-1)) that cover a clinically important concentration range. The successful measurement of CRP in diluted serum samples demonstrated the application of this capillary sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call