Abstract

In this paper, a novel single-stage electronic ballast with a high power factor is presented. The ballast circuit is based on the integration of a buck converter to provide the power factor correction, and a flyback converter to control the lamp power and to supply the lamp with a low-frequency square-waveform current. Both converters work in discontinuous conduction mode, which simplifies the control. In spite of being an integrated topology, the circuit does not present additional stress of voltage or current in the main switch, which handles only the flyback or buck current, depending on the operation mode. To supply the lamp with a low-frequency square-wave current to avoid acoustic resonances, the flyback has two secondary windings that operate complementarily at a low frequency. The design procedure of the converters is also detailed. Experimental results from a 35-W metal halide lamp are presented, where the proposed ballast reached a power factor of 0.95, a total harmonic distortion of 30% (complying with IEC 61000-3-2), and an efficiency of 90%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call