Abstract

Regulation of messenger RNA is crucial in many contexts, including development, memory and cell growth. The 3' untranslated region is a rich repository of regulatory elements that bind proteins and microRNAs. Here we focus on PUF proteins, an important family of mRNA regulatory proteins crucial in stem-cell proliferation, pattern formation and synaptic plasticity. We show that two Caenorhabditis elegans PUF proteins, FBF and PUF-8, differ in RNA-binding specificity. FBF requires the presence of a single 'extra' nucleotide in the middle of an eight-nucleotide site, whereas PUF-8 requires its absence. A discrete protein segment is responsible for the difference. We propose that a structural distortion in the central region of FBF imposes the requirement for the additional nucleotide and that this mode of PUF specificity may be common. We suggest that new specificities can be designed and selected using the PUF scaffold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.