Abstract

Switched-capacitor-based multilevel inverters for boost-type dc–ac power conversions usually exhibit a trade-off between the switch count and switch-voltage rating, i.e., a reduction of one necessitating an increase of the other. Such a dilemma is well addressed in this article by proposing a novel single-phase nine-level inverter based on a switched-capacitor network with a single switch. The proposed inverter then reduces the number of switches while generating a boosted dc-link voltage. A unique six-switch full-bridge cooperating with a low-frequency half-bridge further steps-up the output voltage with a quadruple gain. The voltage stresses on the power devices are, however, maintained low even under the boosted high output voltage, as all the switches/diodes can be clamped to any of the low-voltage capacitors. Consequently, low-voltage power devices can be utilized, reducing the overall power loss. Detailed theoretical analysis, calculations, and design considerations of the proposed inverter are provided. Comparisons with the prior-art inverters illustrate its advantages. Simulations and experimental tests on a 1-kVA inverter prototype verify the above-claimed benefits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call