Abstract
Early detection of fatty-liver disease is important before further aggravations of the disease, such as cirrhosis, can develop. In this study, we developed a low-cost, movable single-sided magnet for in vivo liver fat quantification. A gradient field of 73.5 G/cm and a field strength of 0.0725 T were obtained by structurally optimizing the concave U-shaped magnet, on which the region of interest (ROI) was a curved shape about 0.4 mm thick, 8 cm above the surface of the radiofrequency (RF) coil. We constructed a prototype nuclear magnetic-resonance (NMR) relaxometry system based on this optimized magnet. Subsequent phantom experiments demonstrated the effectiveness of the single-sided magnet in evaluating different proton density fat fraction (PDFF) phantoms. As expected, the results of the six phantoms showed good positive correlation between PDFF and the fitted fat amplitude, which suggested that single-sided NMR relaxometry could be used to quantify liver fat in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.