Abstract
Surface plasmon resonance microscopy (SPRM) has been widely used as a sensitive imaging platform for chemical and biological analysis. The SPRM system inevitably suffers from focus inhomogeneity and drifts, especially in long-term recordings, leading to distorted images and inaccurate quantification. Traditional focus correction approaches require additional optical parts to detect and adjust focal conditions. Herein, we propose a deep-learning-based image processing method to gain autofocused SPRM images, without increasing the complexity of the optical systems. We trained a generative adversarial network (GAN) model with thousands of SPRM images of nanoparticles acquired at different focal distances. The trained model was able to directly generate focused SPRM images from single-shot defocused images, with no prior knowledge of the focus conditions during recording. Experiments using Au nanoparticles show that this method is effective in both static and time-lapse monitoring. The proposed autofocus technique thus provides an approach for improving the consistency among SPRM studies and for long-term monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.