Abstract

Filoviruses are the causative agents of an increasing number of disease outbreaks in human populations, including the current unprecedented Ebola virus disease (EVD) outbreak in western Africa. One obstacle to controlling these epidemics is our poor understanding of the host range of filoviruses and their natural reservoirs. Here, we investigated the role of the intracellular filovirus receptor, Niemann-Pick C1 (NPC1) as a molecular determinant of Ebola virus (EBOV) host range at the cellular level. Whereas human cells can be infected by EBOV, a cell line derived from a Russell's viper (Daboia russellii) (VH-2) is resistant to infection in an NPC1-dependent manner. We found that VH-2 cells are resistant to EBOV infection because the Russell's viper NPC1 ortholog bound poorly to the EBOV spike glycoprotein (GP). Analysis of panels of viper-human NPC1 chimeras and point mutants allowed us to identify a single amino acid residue in NPC1, at position 503, that bidirectionally influenced both its binding to EBOV GP and its viral receptor activity in cells. Significantly, this single residue change perturbed neither NPC1's endosomal localization nor its housekeeping role in cellular cholesterol trafficking. Together with other recent work, these findings identify sequences in NPC1 that are important for viral receptor activity by virtue of their direct interaction with EBOV GP and suggest that they may influence filovirus host range in nature. Broader surveys of NPC1 orthologs from vertebrates may delineate additional sequence polymorphisms in this gene that control susceptibility to filovirus infection. IMPORTANCE Identifying cellular factors that determine susceptibility to infection can help us understand how Ebola virus is transmitted. We asked if the EBOV receptor Niemann-Pick C1 (NPC1) could explain why reptiles are resistant to EBOV infection. We demonstrate that cells derived from the Russell's viper are not susceptible to infection because EBOV cannot bind to viper NPC1. This resistance to infection can be mapped to a single amino acid residue in viper NPC1 that renders it unable to bind to EBOV GP. The newly solved structure of EBOV GP bound to NPC1 confirms our findings, revealing that this residue dips into the GP receptor-binding pocket and is therefore critical to the binding interface. Consequently, this otherwise well-conserved residue in vertebrate species influences the ability of reptilian NPC1 proteins to bind to EBOV GP, thereby affecting viral host range in reptilian cells.

Highlights

  • Filoviruses are the causative agents of an increasing number of disease outbreaks in human populations, including the current unprecedented Ebola virus disease (EVD) outbreak in western Africa

  • We found that Niemann-Pick C1 (NPC1) could influence the cellular host range of filoviruses— human NPC1 conferred susceptibility to filovirus entry and infection when expressed in the nonpermissive reptilian cell line VH-2, derived from a Russell’s viper (Daboia russellii) [22]

  • We postulated that Ebola virus (EBOV) fails to enter and infect Russell’s viper VH-2 cells because the EBOV entry glycoprotein, GP, cannot recognize the viper ortholog of the filovirus intracellular receptor, Niemann-Pick C1 (Daboia russellii NPC1 [DrNPC1])

Read more

Summary

Introduction

Filoviruses are the causative agents of an increasing number of disease outbreaks in human populations, including the current unprecedented Ebola virus disease (EVD) outbreak in western Africa. Analysis of panels of viper-human NPC1 chimeras and point mutants allowed us to identify a single amino acid residue in NPC1, at position 503, that bidirectionally influenced both its binding to EBOV GP and its viral receptor activity in cells. Whereas a broad range of mammalian and avian cell lines are susceptible to EBOV and/or MARV, all tested reptilian and amphibian lines are resistant to infection [8,9,10] These findings suggested the existence of one or more unknown determinants of filovirus host range. We found that NPC1 could influence the cellular host range of filoviruses— human NPC1 conferred susceptibility to filovirus entry and infection when expressed in the nonpermissive reptilian cell line VH-2, derived from a Russell’s viper (Daboia russellii) [22]. We did not establish the molecular basis of the NPC1-dependent block to viral entry in VH-2 cells

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.