Abstract

The nonstructural protein 1 (A/NS1) of influenza A viruses (IAV) harbors several src homology (SH)-binding motifs (bm) that mediate interactions with cellular proteins. In contrast to the sequence variability of the second SH3bm, tyrosine 89, within the SH2bm is a highly conserved residue among IAV strains. This prompted us to evaluate the necessity of this SH2bm for IAV virulence. In an in vivo mouse model, we observed drastic reductions in weight loss, mortality, and virus titers in lung and bronchoalveolar lavage fluid after infection with the mutant virus PR8 A/NS1-Y89F (PR8 Y89F) when compared with wild-type virus (PR8 wt). Concomitantly, we observed decreased inflammation and less severe pathologic changes, reflecting reduced levels of virus titers. At histologic analysis, lungs infected with PR8 wt virus showed widespread destruction of the bronchiolar epithelium, with extensive distribution of virus antigen within tracheal, bronchial, bronchiolar, and alveolar epithelium. In marked contrast, the bronchiolar epithelium after infection with the mutant PR8 Y89F virus was entirely intact, and the severity and extent of viral infection was reduced and strongly restricted to alveoli. These findings demonstrate that change of a single residue of the highly conserved SH2bm within the A/NS1 results in restricted virus spread in mouse lung and strongly reduced virulence, which illustrates the necessity of the SH2bm for IAV-induced pathogenicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.