Abstract

Mge1, a yeast homologue of Escherichia coli GrpE, is an evolutionarily conserved homodimeric nucleotide exchange factor of mitochondrial Hsp70. Temperature-dependent reversible structural alteration from a dimeric to a monomeric form is critical for Mge1 to act as a thermosensor. However, very limited information about the structural component or amino acid residue(s) that contributes to thermal sensing of Mge1/GrpE is available. In this report, we have identified a single point mutation, His167 to Leu (H167L), within the hinge region of Mge1 that confers thermal resistance to yeast. Circular dichroism, cross-linking, and refolding studies with recombinant proteins show that the Mge1 H167L mutant has increased thermal stability compared to that of wild-type Mge1 and also augments Hsp70-mediated protein refolding activity. While thermal denaturation studies suggest flexibility in the mutant, ionic quenching studies and limited proteolysis analysis reveal a relatively more rigid structure compared to that of the wild type. Intriguingly, Thermus thermophilus GrpE has a leucine at the corresponding position akin to the Mge1 mutant, and thermophilus proteins are well-known for their rigidity and hydrophobicity. Taken together, our results show that the yeast Mge1 H167L mutant functionally and structurally mimics T. thermophilus GrpE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.