Abstract
The solid-state reaction method was used to develop a series of Na2Ca1-x-yCexMnyP2O7 phosphors in an H2–N2 environment. The crystal structure of the pyrophosphate host, valence state of dopants (Ce, Mn), emission behavior of dopants, energy transfer mechanism, and thermal quenching behavior were thoroughly examined. Doping with Ce3+ and Mn2+ ions enhanced the photoluminescence characteristics of Na2Ca1-x-yCexMnyP2O7 while having negligible effect on the host's phase purity. Under 365 nm UV light irradiation, the addition of Ce3+ ion in the Na2CaP2O7 host revealed an asymmetric band with the typical blue emission around 415 nm and a shoulder around 455 nm. To obtain white light, Mn2+ ion was supplementarily substituted to the present system. When the Mn2+ ions concentration was elevated in the Na2CaP2O7 host, the emission intensity of 560 nm peak corresponding to Mn2+ transition enhanced significantly at the cost of Ce3+ emission of 415 nm. The systematic decrease of Ce3+ emission intensity and corresponding increase in the Mn2+ intensity with the increase in Mn2+ concentration indicated the possibility of effective energy transfer from Ce3+ to Mn2+ ions. The obtained results indicated that energy transfer from the Ce3+ to Mn2+ ions governed by dipole-quadrupole interaction. Because of the efficient energy transfer, the blue emission from Ce3+ and the orange red emission of Mn2+ provide white light from a single host along with high value of activation energy and low thermal quenching behaviour make the present phosphors to be suitable for high-power LEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.