Abstract

AbstractA single‐phase full‐color emitting phosphor Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ has been synthesized by high‐temperature solid‐state method. The crystal structure is measured by X‐ray diffraction. The emission can be tuned from blue to green/red/white through reasonable adjustment of doping ratio among Eu2+/Tb3+/Mn2+ ions. The photoluminescence, energy‐transfer efficiency and concentration quenching mechanisms in Eu2+‐Tb3+/Eu2+‐Mn2+ co‐doped samples were studied in detail. All as‐obtained samples show high quantum yield and robust resistance to thermal quenching at evaluated temperature from 30 to 200°C. Notably, the wide‐gamut emission covering the full visible range of Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ gives an outstanding thermal quenching behavior near‐zero thermal quenching at 150°C/less than 20% emission intensity loss at 200°C, and high quantum yield‐66.0% at 150°C/56.9% at 200°C. Moreover, the chromaticity coordinates of Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ keep stable through the whole evaluated temperature range. Finally, near‐UV w‐LED devices were fabricated, the white LED device (CCT = 4740.4 K, Ra = 80.9) indicates that Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ may be a promising candidate for phosphor‐converted near‐UV w‐LEDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.