Abstract
We present an adaptive out-of-core technique for rendering massive scalar volumes employing single-pass GPU ray casting. The method is based on the decomposition of a volumetric dataset into small cubical bricks, which are then organized into an octree structure maintained out-of-core. The octree contains the original data at the leaves, and a filtered representation of children at inner nodes. At runtime an adaptive loader, executing on the CPU, updates a view and transfer function-dependent working set of bricks maintained on GPU memory by asynchronously fetching data from the out-of-core octree representation. At each frame, a compact indexing structure, which spatially organizes the current working set into an octree hierarchy, is encoded in a small texture. This data structure is then exploited by an efficient stackless ray casting algorithm, which computes the volume rendering integral by visiting non-empty bricks in front-to-back order and adapting sampling density to brick resolution. Block visibility information is fed back to the loader to avoid refinement and data loading of occluded zones. The resulting method is able to interactively explore multi-gigavoxel datasets on a desktop PC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.