Abstract

Increasing temperature was used to progressively interconvert non-force-generating into force-generating states in skinned rabbit psoas muscle fibers contracting isometrically. Laser temperature-jump and length-jump experiments were used to characterize tension generation in the time domain of the Huxley-Simmons phase 2. In our experiments, phase 2 is subdivisible into two kinetic steps each with quite different physical properties. The fast kinetic component has rate constant of 950 s-1 at 1 degrees C and a Q10 of approximately 1.2. Its rate is tension insensitive and its normalized amplitude declines with rising temperature--behavior that closely parallels the instantaneous stiffness of the cross-bridge. It is likely that this kinetic step is a manifestation of a damped elastic element/s in the fiber. The slow component of phase 2 is temperature-dependent with a Q10 of approximately 3.0. Its rate is sensitive to tension. Unlike the fast component, its amplitude remains in fixed proportion to isometric tension at different temperatures indicating direct participation in tension generation. Similar T-jump studies on frog fibers are also included. The combined results (frog and rabbit) suggest that tension generation occurs in a single endothermic (entropy driven) step in phase 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.