Abstract

In this paper, a novel optimization method based on single objective, that is, minimization of sideband radiation (SBR) of ultra-low side lobe, narrow beam patterns in time modulated antenna arrays (TMAAs) is proposed. The proposed method utilizes the weighting vectors of the low side lobe Dolph-Chebyshev/Taylor series patterns as the dynamic excitation coefficients of the desired pattern at fundamental radiation. Differential evolution algorithm is employed to distribute the static amplitudes and switch-on time durations in such a way that in the optimization process, dynamic excitation distribution remains the same. Static amplitudes are perturbed in a predefined search range of (0.25, 1), whereas the weighted values of switch-on time durations are obtained by dividing dynamic excitation coefficients by static amplitudes. The technique greatly simplifies the difficulties of multi-objective TMAA synthesizing problem by reducing it to a single-objective optimization problem. Numerical examples for a 32-element linear array are presented to produce ultra low side lobe Taylor and Dolph-Chebyshev pattern with low value of maximum sideband radiation (SBRmax). The optimization results of the proposed method are also compared with those obtained by other optimization techniques, which have been reported previously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.