Abstract
Genetic mechanisms have been implicated as a cause of some cases of male infertility. Recently, 10 novel genes involved in human spermatogenesis were identified by microarray analysis of human testicular tissue. One of these is spermatogenesis-associated 17 (SPATA17). To investigate whether defects in the SPATA17 gene are associated with azoospermia due to meiotic arrest, a mutational analysis was conducted, in which the SPATA17 coding regions of 18 Japanese patients with this condition were sequenced. A statistical analysis was carried out that included 18 patients with meiotic arrest, 20 patients with Sertoli-cell-only syndrome (SCOS) and 96 healthy control men. No mutations were found in SPATA17. However, three coding single nucleotide polymorphisms (cSNPs: SNP1-SNP3) were detected in the patients with meiotic arrest. No significant differences in the genotype or allele frequencies of SNP1 and SNP2 were found between patients with meiotic arrest and the others. However, the frequency of the SNP3 allele was significantly elevated in the meiotic arrest group (P < 0.05). This study suggests that SPATA17 may play a critical role in human spermatogenesis, especially in meiosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.