Abstract

Targeting is one of the most important strategies for enhancing the efficacy of cancer photothermal therapy (PTT) and reducing damage to surrounding normal tissues. Compared with the traditional targeting approaches, the active targeting of breast cancer cells in PTT using chemotherapeutic drugs, such as tamoxifen (TAM), in combination with single-molecule photothermal photosensitizers has superior selectivity and therapeutic effects. However, single-molecule drug-targeting photosensitizers for improved PTT efficacy are not widely reported. Accordingly, herein, a near-infrared induced small-molecule photothermal photosensitizer (CyT) is developed that actively targets the estrogen receptors (ERs) of breast cancer cells as well as targets mitochondria by structure-inherent targeting. Cell uptake and cytotoxicity studies using different types of cells show that CyT enhances the efficiency of TAM-based PTT by targeting ER-overexpressing breast cancer cells and selectively killing them. In vivo experiments demonstrate that CyT can be used as a photothermal agent for fluorescence imaging-guided PTT. More importantly, the intravenous injection of CyT results in better targeting and efficiency of tumor inhibition compared with that achieved with the TAM-free control molecule Cy. Thus, the study presents an excellent small-molecule photothermal agent for breast cancer therapy with potential clinical application prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.