Abstract
BackgroundQuality assessment of protein tertiary structure prediction models, in which structures of the best quality are selected from decoys, is a major challenge in protein structure prediction, and is crucial to determine a model’s utility and potential applications. Estimating the quality of a single model predicts the model’s quality based on the single model itself. In general, the Pearson correlation value of the quality assessment method increases in tandem with an increase in the quality of the model pool. However, there is no consensus regarding the best method to select a few good models from the poor quality model pool.ResultsWe introduce a novel single-model quality assessment method for poor quality models that uses simple linear combinations of six features. We perform weighted search and linear regression on a large dataset of models from the 12th Critical Assessment of Protein Structure Prediction (CASP12) and benchmark the results on CASP13 models. We demonstrate that our method achieves outstanding performance on poor quality models.ConclusionsAccording to results of poor protein structure assessment based on six features, contact prediction and relying on fewer prediction features can improve selection accuracy.
Highlights
Quality assessment of protein tertiary structure prediction models, in which structures of the best quality are selected from decoys, is a major challenge in protein structure prediction, and is crucial to determine a model’s utility and potential applications
We propose a novel method for assessment of poor quality models that combines physics-based knowledge, tertiary structure properties, and physical properties derived from amino acid sequences
The predicted distance potential can be used for model quality assessment, which improves prediction accuracy greatly [12]
Summary
Quality assessment of protein tertiary structure prediction models, in which structures of the best quality are selected from decoys, is a major challenge in protein structure prediction, and is crucial to determine a model’s utility and potential applications. Estimating the quality of a single model predicts the model’s quality based on the single model itself. Direct prediction of a protein’s tertiary structure based on amino acid sequence is a challenging problem that has a significant impact on modern biology and medicine. The results of such predictions play key roles in understanding of protein function, design of proteins for new biological functions, and research and development of new drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.