Abstract

This paper proposes a microcantilever-type zinc oxide (ZnO) gas sensor fabricated using typical micro-electro-mechanical system (MEMS) process. To achieve low power consumption, we developed a long narrow single cantilever beam and the sensing region is at the free end of it. ZnO was sputtered under the atmosphere of O <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> as the sensing layer. And a thin Au buried layer was deposited to form the “sandwiched” structure of a thin Au layer between two ZnO layers. Ethanol, as a typical volatile gas, was chosen to verify the performance of the proposed sensor. The results indicate that the “sandwiched” sensing layer shows higher response to ethanol compared with single-layer ZnO, and the best sensitivity to 100 ppm ethanol is 7.11. Besides, the response time is 12 s and the sensor consumes a low power consumption of only 5.81 mW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.