Abstract
Summary Unassisted solar water splitting is one key step of artificial photosynthesis converting solar energy to chemical fuels. To date, however, there has been no demonstration of efficient and stable semiconductor photoelectrodes without extra surface protection for unassisted solar water splitting. In this work, we show that a single-junction approach of p-type In0.25Ga0.75N nanowires monolithically integrated on n-type Si wafers through an n++/p++-InGaN tunnel junction can drive relatively efficient and stable unassisted water splitting. A photocurrent density of 2.8 mA cm−2 was measured at zero bias versus a platinum counter electrode in a two-electrode configuration, leading to a solar-to-hydrogen efficiency of 3.4%. No performance degradation was observed for ∼300 h of unassisted solar water splitting without using any extra surface protection layers. Such a single-junction photocathode can be further integrated with a narrow band-gap junction, e.g., Si or GaAs, to achieve further improved efficiency for long-term stable solar water splitting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.